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Abstract

In this report the analysis of a micro-scale pump is described. This micro-pump uses
active control to produce a distributed body force in a fluid micro-channel. The desired
effect of this body force is to drive fluid through the channel. Limitations, assumptions,

and design parameters are discussed.

The mathematical analysis of pump dynamics is explained in detail. A perturbation
analysis is used on the equations of mass, momentum and state to produce equations of
motion for first and second order effects. The first order effects are described by linear
wave motion in the fluid and are found by using integral equation methods. The second
order effects are driven by body forces resulting from first order effects. Thus, by
controlling the production of wave motion in the channel, second order excitation can also
be controlled.

This report is all theory and therefore needs experimental validation. Although many of
the assumptions used in this report have been used elsewhere in the literature and have
been found to be sufficient, there are many aspects of the problem which have been left
unresolved. In particular, flow separation in the fluid channel is a critical problem. If the
fluid does not separate, pumping will occur through the channel, however, if internal or
external forces are not sufficient to stop separation, this type of pump will not function.
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Notation

| - channel length

h - channel height

w - source width

l,, - source location from center line

p - density of channel fluid

v - velocity of fluid particle

P - fluid pressure

K - shear coefficient of viscosity

H, - expansion coefficient of viscosity

S - specific entropy
Po: P1.P, - perturbations of density

Po: Py, P, - perturbations of pressure
Vo, V1, V2 - perturbations of velocity

¢y = ./B/py - ambient sound speed

B - bulk modulus of fluid
F - body force excitation

Y = W/ pPg
1 3 0
Y= %Bl *aha
@ - dilatational potential
- shear potential

\A/]_ = \Tlejmt
Q= <Dejcot
§ = we

viii

k, - dilatational wave number

ks - shear wave number

w - circular frequency

¢, - dilatational sound speed

C, - shear sound speed

(10 - time averaged responsefof
C - solid angle coefficient
G(To|(r,k)) - Green’s function

Q - fluid domain
r - surface of fluid domain

ro - vVector pointing to a point i
- vector pointing to a point in

=

N

= ?o—r
¢ - solid angle on surface

Ho(x) - 0" order Hankel function

y, - Shear potential for 2-D problems

oL v

W .
e " solution vectors

13
S9)

®, W,

QD

Go, Ho, Gy, Hy - influence matrices

Go,,., Ho,,., Gw,,. , Hw,,. - iInfluence matrices

dobs, Wobs- SOlUtiON vectors
A, - length ofi" element
N - number of elements

Ax, Ay - perturbation in x and y



1. INTRODUCTION

In this paper the analysis of an acoustic micro-pump is presented. Unlike previous micro-
pumps which are comprised of oscillating diaphragms and a series of complex values, this
pump is unique in that it is based on the concepts of active control and acoustic streaming.

Micro-scale pumps have many applications. They can be used to drive micro-cooling

systems which can be used to eliminate detrimental heat in circuitry and can be used to
power micro-fluid systems which can be used as an alternative to micro-electronics. They
can also be integrated into motion control systems for the purpose of moving objects in
micro-space.

Recently, a few authors [1,2] have suggested using the phenomena of acoustic streaming
to build micro-pumps. Pumps operating by streaming would have few moving parts and
could be easily constructed. Acoustic streaming results from Reynolds stress in a fluid.
Reynolds stress can be produced by an acoustic wave with spatially varying amplitude. By
controlling the acoustic waves which produce Reynolds stress, fluid motion can also be
controlled.

Acoustic streaming is a well known phenomena. Nyborg [3] used a perturbation method
and time averaging to explain how a damped acoustic plane wave can produce streaming.
Lighthill [4] expanded upon Nyborg's explanation by quantifying the significance of
various terms in the streaming equations. In this paper not all of the terms discussed by
Lighthill will be used. Only those terms that are necessary to show how active control can
be used to move fluid through a channel will be retained.

R.M. Moroney, R.M. White, and R.T. Howe [1] constructed a pumping device driven by a
flexural plate wave source. This device produced streaming by using the natural
attenuation of evanescent shear waves to create a Reynolds stress. S. Shiokawa and Y.
Matsui [2] showed that a leaky surface wave could produce a larger Reynolds stress in the
fluid than a surface wave without leakage.

In R.M. Moroney, R.M. White and R.T.Howes’ work, Reynold’s stress was the result of
wave distortion due to natural attenuation. In S. Shiokawa and Y. Matsuis’ work this
distortion was enhanced by attenuation due to leakage. In this work distortion will result
from wave interference produced by using active control.

2. PUMP GEOMETRY

The acoustic pump under consideration is shown in Figure 1. This pump consist of two
substrates with an open channel cut between them. A cross-sectional view of this channel
is shown in section A-A. The channel is of length and of héight and it is assumed that
the fluid in the channel is Newtonian. On either side of the channel is a set of velocity
sources. Sources are of width  and gje from the center of the channel. Opposing
sources are driven 180 degrees out of phase. In this paper opposing pairs will be treated as

a single source. The pair of sources to the left of the center of the channel will be referred
to as the left source, and the pair of sources to the right of the center of the channel will be



referred to as the right source. As will be shown, by varying the relative phasing between
right and left sources, a net time averaged pressure gradient can be produced across the
channel.

wbsvate ' Section AA |

center line |

velocity |
SOUrces

»
|

Figure 1: Acoustic pump geometry

3. DERIVATION OF EQUATIONS OF MOTION

In the following section first and second order equations of motion for a Newtonian fluid
are derived. Much of this information has been accumulated from Temkin [5], Nyborg [3]
and Lighthill [4].

The equations of mass, momentum and state for a Newtonian fluid are given by

(mass) ®+ompei = o (1)
(momentum) p[%\7+ (?/D)\ﬂ =-0P+ %u + 10 0/ — p(Ox(0xV)) (2)
(state) P = P(p,s) 3

wherep is the density of the fluid, is the velocity of a fluid partigle, is the shear
coefficient of viscosityy, is the expansion coefficient of viscosity, and is the specific
entropy.

Substituting the perturbation expansion

2
P = Pyt PIE+PHE .. 4)
P = PO+P15+P2£2... (5)
¥ = Vg e + Vel (6)

into (1), (2), and (3) and assuming thigt= o (i.e., no externally driven flow) gives to
order



op

1 N
(mass) 5t tPoDH1 =0 (7)
(momentum) pO%\Tl = —0P, + E%u + 10 077 — pOxOxvy (8)
(state)p, = cgp, 9)

wherec, = %?—';% = pE ands is the bulk modulus of the fluid.
0

To £2 order this perturbation expansion gives
(momentum)

6 — — 6 a A A N N
Pogiv2 = ~OP2+ E%p + “v%] 0 By — HOXOXV,y= 5P V1 = po(Vq (Vg —povq (O Og) . (20)

Taking the time averaged of (10) and noticing that, as stated by Lighthing{[éljulmmo ,
equation (10) becomes

G-DPZ“L%H’LUV%]D D./_Z\—MDXDXV_Z\D: F (11)

where [fJ is the time average of and
F = poVq M)V + V(0 00 (12)
The function(v, tm)v, +v,(0 ;) is the Reynold’s stress vector.

Assuming thato ©,0= 0 (for second order channel flow)

W02 ,0= —F + O0P,0. (13)

Equation (13) is Laplace’s equation driven by a right hand side comprised of first order
terms and the gradient of the time averaged second order pressure. The vector#unction

represents a body force driving the second order equation of motion. To calculate this
body force, the first order solution (7), (8), and (9) must be solved for and substituted into
(12). This first order solution can be represented in terms of linear dilatational and shear
waves. By controlling these waves in the fluid, the body force, , can be controlled and
therefore, so can the second order time averaged motion of fluid through the channel.

This first order solution can be represented in terms of linear dilatational and shear waves.
Combining equation (7), (8) and (9) gives

2,
o] Vi 2D 4y' ot N
— — i+ = 1(0 Orp) = —yOxOxvy 14
o2 oog Tagag U (14)



wherey = ZHi+3u 3 and = £ . The velocity  can be written as
Po Po

vy = O+ 0OxP (15)

whereoxe anditp . Substituting (15) into (14) and taking the gradient of the result gives

2
d o0 4avioll,
¥ _dn+zoomi’e=o0. (16)

P-vO°P = 0. (17)

Equation (16) is the wave equation for dilatational motion in the fluid, and (17) is the wave
equation for shear motion in the fluid.

The temporal transform of (15), (16) and (17) results in

Vi = O®+ Ox¥ (18)
(@ +KD)® = 0, (D2 +KAW = 0 (19,20)
2 2 2
where
i = RV, @ = Re(@d™) , §i = RqWe™) (23,24,25)

for harmonic excitation. Equations (19) and (20) can be solved for using a boundary
element method. The solution to these equations will produce wand . Using this
solution and (18)y can also be determined.

Rewriting (12) in terms of, gives
F = 2p,(Re(W)( [Re(W)) + Im(Va) (0 CIm(Va)) + (Re( Vo) CL)Re( ) + (Im(Va) () Im(Va)} . (26)

Thus, withv ,F is determined. For waves propagating in only the x direction, (26)
becomes

v v
F, = pOERe( \/X)R%—XXE+ |m(vx)|m£—XX% (27)

whereV, = v,i ,F = Fj is a vector in the x direction.



4. SOLUTION OF THE EQUATIONS OF MOTION

Equations (19), (20) and (13) are the equations of motion for the fluid. Equation (19) and
(20) can be used to solve for and using a boundary element methock Withy and
(18) can be used to solve far , and with , (26) can be used to solve for FWith
equation (13) can be used to solve for the time average flow of fluid in the chagnel, , or
the net time averaged pressure gain across the chamel . In this section a solution for
ocp,0is outlined.

Assuming that the width of the channel is large compared to its thickness, a two
dimensional plane stress analysis is appropriate. The surface of the Figure 1 fluid domain
can be discretized as shown in Figure 2. In two dimensional space, the integral
representations of (19) and (20) are given by

Culio) = ~[6(Goff. k)g(h) - 56 k)@ o (28)
r

N 0 U RN
Fokg)5=W,(F) ~3-G(fo

R 0. ,. N .0

CW (o) = —[[G(To r, kg W(F) el (29)
Au O

1

J2m

c=1ifi,o0r,c=1/2if i{xOr, H, is a zeroth order Hankel function amd= w & where

is a unit vector normal to the analysis plane.

wherer is the surface of the fluid domam, G(j|r, k) = HokR) R3[R R3 To-Tf ,

As shown in Figure 2, vector notation can be used to define points in the channel and on
the channel surface. The surface can be represented as the union of a number of sub-
surfaces where

r= rtop,igid D rtopsllj rtopszlj rbottomigid D rbottongllj rbotton"é2 '

rtoprigid Fmp”gid ,L‘l&gd_\ tradiatitc)).n t
\ F,LQ%;M,F\EEL%Z / 0 ambien
-~ d
- \
radiation)/ \
to ambient N

Figure 2: Boundary element discretization of Figure 1
section A-A



If the surfaca is discretized into a distribution of uniform elements, then using boundary
element theory [6] there will be Ehp unknowns in this problem wh%re is the total

number of elements. These unknowns are the vaIueSipf;—nm(Fi) W(fi), %ta;m) at

the center node of each element. Th«UEhp unique equations are required to solve for
these4m, unknowns. These equations come from (28) and (29) and from boundary
conditions.

Two n, unique equations can be formed by discretizing (28) and (29) as
15 = GodT _flod , 3 = Gult _fiud (30,31)
where

® = [0(), (), ], ¥ = (W), Wi,
]

0> _ b, ad . T aw _ W, 0¥,
an - [ﬁ(rl),%(rz), } e [g—nz(rl),%z(rz), } ,
0 G(rq|i2 kDB ° ° GHl‘an' kﬂﬁnp

G(ig|fy k) 0 " Sffaffn B,

Gﬁnp‘Fl, H, ngp‘Fz, K, 0

%G(Fl‘Fl' kA %G(Fl‘FZ' Ay © a’lnGgl‘an' ki,

%G(FZ‘FL kA %G(Fzﬁzr Ay © ;?632‘?%' ki,

T
<
1

d . F) R P .
ﬁGSnp"l'klgﬁlﬁegnp"zklgﬁz %G%np"np’klgﬁ;{

0 Glfy|fp kgBy °° Gﬁl‘an, ksgsnp

G(?Z‘Fl, kgAq 0 oo GBZ‘an' ksgﬁnp

eﬁnp‘q, kg ngp‘Fz, kD, 0

%G(Fl‘Fl' kBq ,%G(Flﬁz’ kgby ° @%Gﬁﬂfnpr ksEPnp

0 s s 0 s s 0 N
arC(12[f1 kgDy 3rG(io|ip kD, ° a?GSZ\'np’ ksgﬁnp

T
€
1"

o o

0 N 0 N i) N
757165%\% ket a*negnp\rzl kst a*nGﬁnp\rnp’ kst

P

A, is the length of thé" element apd, i, o} OT



AnotherZEhIO equations can be formed from the boundary conditions. These boundary

conditions are different for each sub-surface of . Omihe rangh,., surface, the
normal velocity is zeros, therefore, from (18)

GIONN

ay( )— ax (r) =oforto  topg L Mbottomgs - (32)
. . . . y 0 .
The termaq’(F) in (32) is contained in the vecg(%’r and the t%(prhf) in (32) can be

determined by using a finite differences.

Velocity sources are also represented as a set of boundary conditigqs. If is the normal
velocity of the left source anqight is the velocity of source, then

aq’(?) % (r) = v fOr o M op,, (33)
aq’(?) X (r) = Vier fOF 7 0T poriom, (34)
3;"0 % () = Vigne fOr forg, (35)
g?,)(&) ax “(F) = Vyigne fOr 7 0 M bottom, (36)

Equations (32) to (36) are the boundary conditions for this problem. These conditions
along with the2nIO conditions in (30,31) produce enough unique equations to solve for the

vectorse ,w %’ an(%p . These vectors contain the potential solutions on the surface of

the channel and can be used to calculate potentials at any point in the channel.

From (28) and (29) the potentials at any location in the channel can be calculated by

. Y
(DObS = Gmobsﬁ _Hq)obsq) 1 (37738)
. T TR
LpObs = Gwob% _HLpobst (39)

where
Bobs = [®(F1,, ), D2, ), -] s Pobs = [WylFr, ), Wylia, ) 1"

obs’’

{1 Frssd 0 Q5 Nopg IS the number of observation points,

obs' obs



G(rlobs‘rl, kDA, G(rlobs‘rz, KA, Gglm

fn ,kIBBnp

p

By = Glig,, 11 kA1 (g, [T2 k) ° ° GEZobsrnp' Iﬂ%ﬁnp
obs !

G(fy,, T2 kDAL G(rnobs‘rz, k)Ay G(rnobs‘rnp, kl)Anp

S‘

o .+ o v L. 0 . 1
3001, F1 kA 560 12 k), anCH L. g klgﬁnp
F I F I L. @ N
. anSlio, [ kA %G(rzobs‘rz, kA, ﬁGﬁzobsrnp, klgﬁnp
(Dobs B
d N d ., N 7] N
ﬁG(rnobs‘rl’ kl)Al %G(rnobs‘rz’ kl)Az %Gﬁnobs rnp’ kl%p
G(rlobs‘rl, k9D g G(rlobs‘rz, Kkl ° Gglmrnp’ k@np
b - G(rzobs‘rl, k9D G(rzobs‘rz, kA, ° ° Gﬁzobsfnpv k@np
l'IJobs B !
7G(rnobs‘rl, ko) Aq G(rnobs‘rz, k9D, G(ry Ty kS)Anpi
0 . . o . L. 9 . 1
anC(1,, f1 k9B grBlie,, [Takt, anCHL,. g ks%lnp
0 . 0 s 0. 0 R
i i ﬁG(rzobs‘rl, kJA; ﬁG(rzobs‘rz, kD, %G%ZE,bsrnp’ ks%lnp
HLpobs B
d .~ FN ) .
30, F1 kB 5r8lin, T2 k9B, arCHin,. g ks%lnp

From (37) and (38) the potentials at any point in the channel can be determined. To solve
for the body forcefF , the velocity; , must be computed from the spatial derivatives of

these potentials. These spatial derivatives can be approximated by using the central
difference formulas

2o, D“’(“"“WXQ%XT(“"“‘FX’ (40)
2 01,) Dq’(“"“ﬁyzﬂ;j@%“f” (41)
R e @)
S 2,0t D) @3

whereax anddy are small amplitude vectors in the x and y directions. Using equations
(40) to (43) with equation (18), the velocity; , at any point in the domain can be

determined. Then using (26), the body foree, , can be determined.FWith , the time
averaged velocity[¥,0 , or the time average pressure gradiemt , can be determined

from (13).



5. NUMERICAL RESULTS

Using the geometric and fluid properties given in Table 1 and Table 2 and an excitation
frequency ofie> Hz, a first order and second order solution can be determined.

Table 1: Geometric Properties

h w L I

400um 1000um 1000um 1800@m

Table 2: Fluid properties (air)

u Hy Po B

1.846<10 1 | 065LU | 1 77x107 | 2.135107"
kg/ umUs kgCm/um'| N/unf

The first order velocity distribution across the channel was found to be almost uniform
everywhere except very close to the wall. Thus, it was assumed that acoustic propagation
was one dimensional and wall effects contributed little to the second order flow through
the channel. Since wave propagation through the pump is one dimensional, the body force,
F, can be approximated by (27).

If the flow of fluid through the pump is blocked but acoustically transparent, a net pressure
head,ap , develops across the pump. From (13), this pressure is simply the int&gral of
along the length of the pump. This net pressure head is an indication of the ability of the
pump to force fluid through the channel assuming that the fluid in the pump does not
separate.

Letting vy, = 1.0unv' s thenv,,, can be varied to determare  as a function of amplitude
and phase. Figure 3 showg,, for various amplitude between 0 and 1.0, and phases

.TU
. . . 15
between 0 andn radians. Notice that maximamm OCcurs When 1.0e “unv's and
3n

when vy, = 1.0¢ Zunv's where the first maximum corresponds to pumping to the left, and
the second maximum corresponds to pumping to the right

In Figure 4 the x-direction first order acoustic velocity of the fluid at the center of the
3mn

channel can be seen fa,, = 10e Zunvs . Notice that the waves from the two sources
cancel to produce waves propagating from the sources in opposite directions with different

amplitudes. Thus, the amplitude of wave velocity in the channel changes substantially
near the sources.
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Figure 4: x-direction velocity along the center line of the channel

In Figure 5, the Reynolds stress resulting from the Figure 4 wave solution is shown.
Notice that even though the integral of the stress along the length of the pump is positive,
at some locations this stress is negative and then at other locations positive again.
Therefore, even though the integral of the body force tends to drive fluid through the
channel, internally this body force tends to also pull the fluid apart. In this paper, this
effect will be referred to as fluid separation. If fluid separation occurs, the pump will be
non-functional. This separation can only be balanced by an internal or external force
which holds the fluid together. For example, if the fluid were under a static pressure or if
viscous forces were very large, then separation could be avoided.

10
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By simulation, it was found that a left source relative phasingraf2 and amplitude of
1.0 will produce a maximum pressure drop across the channel. By holding the relative
phasing of the second source3mn/ 2 , by holding the amplitude of the secondary source

to 1.0 and by varyingj,, , an analysis of the optimal spacing of sources can be performed.
Figure 6 shows the maximum pressure drop across the pump Jgpshs where

A =2k . Forl,/\ = maximums occur. This corresponds to a spacing

>

8
3. 5
between the sources 2?\ 4)\ N

2.00e-11

1.00e-11

0.00e+00
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-1.00e-11

0.95
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.15 Oéél O.;55
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Figure 6: Pressure drop along the length of channel versus location
of the sources.
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6. CONCLUSIONS

The analysis outlined in this paper makes a number of assumptions. First it was assumed
that only first and second order effects are of importance. If the sources are driven too

hard, higher order effects leading to turbulence and severe mixing will occur, and these

assumptions will then be poor. It was also assumed that wall effects were small. Since first

order acoustics were almost completely one dimensional, this was not an extremely poor
assumption. Moreover, this assumption was a conservative one considering that its

inclusion would help not hinder pumping.

Another assumption was that flow separation does not occur. The net body force in the
pump will attempt to move the fluid left or right; however, internal to the fluid this same
force will also attempt to produce fluid separation. If the fluid separates, no pumping
action will occur. Instead, part of the fluid will be blown out of one end of the pump, part
of the fluid will be blown out of the other end, and the rest will be trapped within.
Separation could be limited if internal or external forces were sufficient to hold the fluid
together. For example, if a net compressive force existed within the fluid which was
greater than the repulsive body force, then pumping could occur.

Notice that the pressures in Figure 6 are very small. These pressures are for a right source
velocity of 1 um/s. If the sources are driven hard, this velocity will be much larger, and the
Figure 6 pressure drop will be enhanced. Nevertheless, the exact level of excitation
required to produce a significant pressure drop is as of yet unknown.

The concept of acoustic pumping is a novel one which should be explored further. The
impact of developing this concept is substantial. Micro-pumps can be used in a number of
applications ranging from micro-level cooling to micro-manipulation. However, the
concept of acoustic pumping is still very theoretical. Experimental analysis is required.
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